首页> 外文OA文献 >Towards optimal nonlinearities for sparse recovery using higher-order statistics
【2h】

Towards optimal nonlinearities for sparse recovery using higher-order statistics

机译:利用高阶方法实现稀疏恢复的最优非线性   统计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider machine learning techniques to develop low-latency approximatesolutions to a class of inverse problems. More precisely, we use aprobabilistic approach for the problem of recovering sparse stochastic signalsthat are members of the $\ell_p$-balls. In this context, we analyze theBayesian mean-square-error (MSE) for two types of estimators: (i) a linearestimator and (ii) a structured estimator composed of a linear operatorfollowed by a Cartesian product of univariate nonlinear mappings. Byconstruction, the complexity of the proposed nonlinear estimator is comparableto that of its linear counterpart since the nonlinear mapping can beimplemented efficiently in hardware by means of look-up tables (LUTs). Theproposed structure lends itself to neural networks and iterativeshrinkage/thresholding-type algorithms restricted to a single iterate (e.g. dueto imposed hardware or latency constraints). By resorting to an alternatingminimization technique, we obtain a sequence of optimized linear operators andnonlinear mappings that converge in the MSE objective. The result is attractivefor real-time applications where general iterative and convex optimizationmethods are infeasible.
机译:我们考虑使用机器学习技术来开发针对一类反问题的低延迟近似解。更准确地说,我们使用概率方法来解决作为$ \ ell_p $ -ball成员的稀疏随机信号的问题。在这种情况下,我们分析了两种估计量的贝叶斯均方误差(MSE):( i)线性估计量和(ii)由线性算子组成的结构化估计量,其后是单变量非线性映射的笛卡尔积。通过构造,所提出的非线性估计器的复杂度与其线性对应器的复杂度相当,因为可以通过查找表(LUT)在硬件中有效地实现非线性映射。所提出的结构使其自身适合于神经网络,并且迭代收缩/阈值类型算法限于单个迭代(例如,由于强加的硬件或等待时间约束)。通过采用交替最小化技术,我们获得了一系列收敛于MSE目标的优化线性算子和非线性映射。该结果对于无法使用通用迭代和凸优化方法的实时应用程序具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号